

Date: 08-11-2024

Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

Answer ALL the questions	(5 x 1 = 5)
---------------------------------	--------------------

1 Answer the following

- a) Write the Hamiltonian of a simple pendulum.
- b) Show that the curl of a conservative force is zero.
- c) Give an example for central force.
- d) If the torque acting on a system of particles is zero, what is conserved?
- e) What is the relation between Lagrange and Poisson brackets?

SECTION A – K2 (CO1)

Answer ALL the questions	(5 x 1 = 5)
---------------------------------	--------------------

2 Answer the following

- a) Find whether the constraint is holonomic (or) non-holonomic and give a reason, for a bead moving on a circular wire.
- b) What is the physical significance of the Hamiltonian function?
- c) Give a reason why Canonical transformations are considered to be useful.
- d) Calculate the reduced mass of the HCl molecule.
- e) A light body and a heavy body have the same kinetic energy; which one will have the greater momentum?

SECTION B – K3 (CO2)

Answer any THREE of the following	(3 x 10 = 30)
--	----------------------

- 3 A point mass moves in a vertical plane along a given path in a gravitational field. The equation of motion in parametric form is $x = x(s)$, $z = z(s)$. Write down the Lagrange's equations.
- 4 Obtain the Hamiltonian and equation of motion for a projectile near Earth's surface.
- 5 Prove Jacobi's Identity: for any three functions F, G, and K of p_k and q_k , the following relation holds true: $[F, [G, K]] + [G, [K, F]] + [K, [F, G]] = 0$.
- 6 Neatly draw and explain Euler's angle and transformation matrix.
- 7 Calculate the inertia tensor for the system of four point masses (1 gm, 2 gm, 3 gm, and 4 gm) located at the points (1 0 0), (1 1 0), (1 0 1), and (2 0 -1) cm.

SECTION C – K4 (CO3)

	Answer any TWO of the following	(2 x 12.5 = 25)
--	--	------------------------

- | | |
|----|--|
| 8 | Use Lagrange's equations to find the equation of a compound pendulum in a vertical lane about a fixed horizontal axis. Hence, determine the period of small amplitude oscillations of the compound pendulum. |
| 9 | What are constraints? Classify the constraints with a few examples. |
| 10 | Describe the Hamiltonian and Hamilton's equations for an ideal spring mass arrangement. |
| 11 | Use Hamilton's equation to find the differential equation for planetary motion and prove that the areal velocity is constant. |

SECTION D – K5 (CO4)

	Answer any ONE of the following	(1 x 15 = 15)
--	--	----------------------

- | | |
|----|--|
| 12 | Derive Lagrange's equations of motion for conservative systems. How will the result be modified for the non-conservative system? |
| 13 | Find the relation between the angular momentum vector, the inertia tensor, and the angular velocity vector. |

SECTION E – K6 (CO5)

	Answer any ONE of the following	(1 x 20 = 20)
--	--	----------------------

- | | |
|----|---|
| 14 | Discuss the vibrations of a linear triatomic molecule. |
| 15 | Discuss the problem of scattering of charged particles by a Coulomb field and obtain Rutherford's formula for the differential cross section. |

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$